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Abstract

Atmospheric extinction in wideband photometry Is examined
both analytically and through numerical simutations. 1If
the derivatives that appear in the Str8mgren=King theory
are estimated carefully, it appears that wideband
measurements can be transformed to outside the atmosphere
wlth errors no greater than a miilimagnitude. A numerical=-
analysis approach is used to estimate derivatives of both
the stellar and atmospheric—extinction spectra, avolding
previous assumptions that tne extinction follows a power
lad. However, it is essential to satisfy the requirements
of the sampling theorem, to keep aliasing errofs small,
Typicallys, this means tnat band separations cannot exceed
hatf of the tull width at half-peak response. Further work
Is needed to examine higher—order effects, which may well

be significant,
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Introduction

The reduction of widebana photometric observations to
outside the atmosphere, and thence to some standard system,
are incompletely solved proolems of long standing., As was
shown by Bengt StrYmgren [1937), and emphasized by Ivan King
(19521, these problems are intimately related; for we may
rejard the extinction correction as a color transformation
that depends on air masse.

This problem is hardly newe In the very earliest
photoelectric photometry, Guthnicx and Prager [1914) found
that "The correction for extinction is one of the most
difficult problems for such exact measurements as can be
reached by photoelectric methodseess The extinction is
dependent on the spectral type to a high degree, Under
normal transparency conditions, the ratio of the
photoelectric to the visual extinction Is about 2.2 for the
middle of class Bs about 2.0 for class Ay etce.» about 1.3
for class Ma. It will apparently turn out later that these
factors themselves are also functions of the zenith
distanceeeee™

Indeed, Forbes (1842] had already found "That the
tendency to absorption througn increasing thicknesses
of air is a diminishing one.ess Hence the amount of vertical
transmission nas always hitherto been greatly overrated,
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or the value of extra atmospneric solar radiation greatly
underratedesess The physical cause of this law of absorption
appears to be the non-homogeneity of the incident raySeeecs"

The flrst analytical treatment of these problems was
made by Be.5tr8mgren [19371, who showed that if the spectral
senslitivity curve of a photometric instrument is fairily
narrows a Taylor series expansion of the stellar spectral
irradiance curve about the instrumental centroid
wavelength allows the extinction to be expressed in terms
of the monocnromatic extinction at this wavelength, with
a correction term proportional to tne square of the
instrumental bandwidthes This approach was developed
further by King (19521, using 3 more compact notation,.
King's paper is required reading for anyone who wants to
understand heterochromatic extinction.,

The correction terms Involve first and second derivatives
of botn the stellar spectral irradiance and (in the
extinction problem) tne atmospheric transmissione. As s
shoWwn by King [i952] and Younyg (19741, the first derivatives
may be apprfoximated by the colors of the stars and the
rediening of tne atmospheres, respectively. King [1952]
shows that the second derivative for the stars can be
neglected, and that == under certalin assumptions tnat wiil

be discussea below == tne second derivative for the
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atmosphere can be related to the first derivative.

Although the corrections are traaitionaily made by using
color indices as independent varliables, Cousins and Jones
[1976]) founc that "no equation involving B=V and U=8B only
with predict the extinction correctiy for all jtuminosity
types and different degrees of reddenings.ese The difference
can exceed uTUl. Without more informations, direct or
inferreds no rigorous colour correction is possible either
for extinction or for colour transformationssees™ Similar
conclusions were reached independently by Mandwewala [19761;
see also Blanco (19571, and rFigels of Young [1974]).

Some years agoy the accepted wisdom was that these
difficulties were due to the jyreat width of the UBYV passbands,
and that intermediate—passband systems such as uvby would
prove far superior. However, bandwidth effects are
proportional to the square of the passband widthy, which
Is about 3 times narrower for uvby than for UBV; hence, if
this were the only problem, such difficulties should be
nearly an order of magnitude smaller for uvby than for UBV,

dut, after the most strenuous efforts at
standardization, Ulsen (198631 found typical systematic
differences pbpetween 4-color data from northern and southern
stations on the order of U.0(G4 majge» and unexplained systematic

errors of several nundredths of a magnitude for a number
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of individual stars. These tigures are only about a factor
of 2 better than has been done in comparably careful UBYV
photometry. Manfroia [1985] says that "reduction of many
observing runs in the uvby system with various equipment
shows that errors as nigh as .05 magnitude, and more, are
not uncommon."™ Indeeds, Manfroid and Sterken [1987] have
recently shown systematic errors as large as a third of s
magni tude in careful uvby observations, taken at a good
site (La Silla)s calibrated with dozens of standard stars,
and reduced by reliable tecaniques.,

Furthermore, the most precise published photometry
appaars to be tnat done in the Geneva system [see Fige2 of
Youngs LJ64al, which has been reproduced to better than
0,003 maygs for well—-observea stars [cfe. Table IV of Rufener,
19811, This precision is all the more remarkable because
the Geneva bands are comparable in width to those of the UBV
system, and, like those of UBVs, are defined by glass rather
than interference filters and by the tail of the
photocathode response function == unlike the supposedly
superior and “filter-defined" uvby bands. Clearly, there
Is more to precision than bandwidath alone.

Because the Geneva workers have been extremely careful
to determine ana use derivatives correctiy, one suspects

that a careful examination of the derivative problems
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would be helpfulse I have already suggested (Young, 1974;
1984b1 that one problem with the traditional approach is the
relatively poor approximation to the first derivatives
provided by spectralily undersampled data; unfortunately,
all existing pnotometric systems violate the rfequirements
imposed by the sampting theorem (though the Geneva system
is less undersampled than most).

This has been confirmea by Manfroid (1985), who shows
that precision can be greatly improved by using a second
set of filters slightly displaced from the normal set, to
estimate more accurate first derivativese I show below
that both first and second derivatives can be determined
accurately, and that such improved estimates |ead to much
more accurate extinction and transformation corrections.

In the past, precision on the order of 1 percent was
regarded as "good enough"™ for most problems, though this
Involved an element of circular reasoning: the lack of
better measurements prevented anyone from even considering
investigations that required much better than l percent
precision. Todays however, there are a number of problems
whose photometric study clearly requires precision on
the order of one millimagnitude or better: the detection
of planetary systems [Borucki, 193«]; stellar seismology

[Fossat, 1984; Hudson, 19841; inventorying the Sun's comet



cloud [(Meinel and Meinely 19861; nontinear dynemics of
pulsating white dwarfs [Auvergne and Baglins 19861 We may
take tnis as a nominal goal to reach == roughly an order of
magni tude petter than current practice. Helntze et al.
[1984) and Schmidt-Kaler [1984] have even suggested that
still smaller errors could be obtained from the ground.

It is yenerally accepted that major advances in ground-
based photometry will require multi=channel techniques,
to remove atmospheric transparency variations, However,
the price thnat must pe paid is the probiem of calibrating
the different channels against one another; this is
essentially the transformation probliem., wWhether we use
multichannel instrumentation or nots, we cannot expect to
do enormously petter than 1Z {f the model used to represent
the heterochromatic extinction Is no better than 12.

A number of distinct issues must be resolveds The question
of adejuate spectral sampling was ralsed above. But, even
with properly sampled datas how should the derivatives be
extracted from the data? And, even before these questions
can pe discussed, there is a conceptual problem with the
derivatives that needs clarification; so let us begin with

it.
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Meaning of the Uerivatives

Qutline of tne Tneory

To see why there 1s a problem with these derivatives, let
us review where they come frome Let I(X) be the steliar
spectral irradiance function; let t(x » Z) be the atmospheric
transmission function

t(N, 2z) = expl=A(A ) M(2)/1.086) (1)

which King (1v¥521) rather inconveniently calls Q(X). Here
A(% ) is the wavelength=dependent extinction coefficient
in nagnitudes per alr mass; M(z) Is the alr=mass function of
zenith distance z» discussed at length by Young [19741])3 and
1.086 Is short for 2.5/1in(l0) = 1.085736ceees which is the
conversion factor petween naturai lojarithms and logs to
the base 24212 (1e2es» magnitudes)s As the following
discussion focuses on the anavelength dependence, we shall
usually omit thne z dependence of t(X).

If the response functlion of the Instrument (including
the telescope optics) Is k(>s), the quantity measured when

we observe this star Is

Le J LOM) Ay kU d) . (2)

King [1952]) splits the integrand into an Instrumental part,
R(k )s and the rest,

SCN) = ICA) tiNy (3)

mwhich changyes from one observation to the next.
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The neart of the Str¥Bmygren=-King method Is to expand S(X )

in a Taylor series about some central wavelength, k ]
o
- % 1 2
SEAY = SEA 2 #5N D UA=A ) +=S5"AN D A=)+ veus (8
"] o o 2 0 (+]

where primes denote wavelength derivativese The integral

(2) can then pe done termwise!

L-ij()\)d)\ + S')()\-)\o) KEAD d)
¢ 2 s j()s-hojzm)ud)s oeee (5)

P2

Thusy the part of the measured light that changes is
expressed in terms of the transmitted spectral distribution

S and its derivativesy, evaluated at ) 35 and the Invariant
0

instrumental iInfluence is expressed by the moments of the
response function R about X e Nowy If % is chosen to be
o °

the centroid wavelength

f)\ RCA D d A

)\ £ s amcm————— (6)

o [R()\)d)\
the SY term In (5) vanishesy and we have only
1 2
Lafmhc)\ [s + E/AZS"], (1)

2
where4/L2 1s tne normalized second central moment of R(A )

j()x - >\o)2k(>\) d \

Z
A TR T ~ (8)
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King tnen expresses S% In terms of the derivatives

of TCN) and t{ N)s
SH = [t 4+ 2 [0E0 + It" ($)

which allows the measurement to be expressed in magnitudes
as followss

m = m + Af X IM(Z) = 1.086 In (1 ¢ x) » (10)
obs o 0

4here m b is the observed instrumental magnitude, m Is
obs o

the magnitude that would have been measured outside the

atmospheres, and

2

1 A, 2 MCZ)AlN) 2
x = = N ——a=- (NTImrp) = ==222222 & (X Cansad o
2 by 1.086
[}
M(z)A(x )
(N Ava) L 2tN 1vsgy = 222222020\ avsm 3 . (11)
1.080

All the parenthetical expressions are evaluated at R o
o

Nows the difficulty is to assign proper significance to
the derivatives I' and I", evaluated at )\oo What is intended
is obviously not what is saia literally, for stellar spectra
are cluttered with absorption lines. If A o happens to
fall on the sloping side of a lines, [' will be enormous, and

obviously untypical of the general run of the spectrum in

the region a few hunared Angstroms wlde that is of Iinterest
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in photometry. Both Str¥mgren and King neatly sidestepped
this question by considering only black bodies in their
exanples., Yet we must deal with real stars, whose spectra
plainly cannot be represented accurately by any low=-order
Taylor series.

Evidentiy, the only sensible physical interpretation
of these derivatives is that they refer not to the true
stellar energy distribution, which fluctuates wildly, but
to some smooth function that approximates Ity and that has
well-behaved acerivativess As only first and second
derivatives appear in (11)» we may suppose that a parabolic
approximation is used.

If we write the true steltar spectral irradiance as
Ny = L (M) v I (N (12)
s r

where Is and Ir are the smoothed intensity and the
remainder, after subtracting tne smoothed irradiance from
the true ones, wWe want to choose the smoothing so that all
the preceding equations are true when Is and its

derivatives are used in place of the true I{ X )s» 1y and I"™.

In particulars, suppose we use (12) in (2)» so that

L = jzs(k)t(k)uk)dk+ jxr(X)t()\Hu}ua)s. (13)

Then the second term in (13) nust be zeros, If King's

formulae are to be true for I « To make
(3
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jir(k)t())m)\:c) =0, (14)

expand t(k ) in a Taylor series about X Lcnhosen according

(1]
to (6)]e¢ This expansion Is generally well=defined, because
t(% ) is quite smooths, provided that we avoid spectral reglons

containing sharp molecular absorption lines. 1Ihen

t(hoijr()\) RCAD) dX + t'(>\0) f(k- }\o) Ir(>\) RIND dA +

L)) ;j()«-)\ 21 (M) R(N) d) =0 . (15)
2 0 0 r

Because t(%(}) and its derivatives depend on air massy and
change from night to night, (15) can be generally true only
if 2ach of these integrals vanishes. For a given star, and
hence a given I(k )» equating each integral to zero provides
three conditions on Ir’ and hence on Is. These are the

three conditions required to choose the parabolic function

IS(A ) uniquely.

In what follows, 1 assume that this cholce has been
made, so that alil the formulae refer to Is and its well-
defined derivatives, instead of to I. The subscript s will
be suppressed, but must be understood to be present
throughout,

Evaluating the Derivatives

Although the discussion above clarifies the meaning of

the derivatives that appear in (1ll1), it does not provide any
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way to evaluate them in practice. The whole point of
broadband photometry is to avoid spreading the light of
faint stars out into spectras which would be necessary to
evaluate the moment integrals in (15). We need to obtain
the derivatives in (11) from the photometric data themselves,
King [1952) used a color index to estimate I', and this has
been the traditional practice ever since. He pointed out
that I"™ acts primarily as a zero-point shift that 1Is
independent of air massy so that for many purposes It can
be ignored. Younyg and Irvine [1967]) and Young [1974] use
the reddening power of the atmosphere to estimate A'; this
is exactly analogous to using a stellar color index to
estimate I',
However, the A" term cannot be ignored. King [(1952] argued
that the wavelength—dependent part of the extinction is
mainly Rayleigh scattering, and hence proportional to % -4.
Because A' appears In (i11) only in the combination X A'/A)>
which is the logarithmic derivative of Al A), and hence
a constant if al( % ) is a power laws King argued that the value
of this constant is =4« His assumption of power—1|aw extinction
also allowed the second derivative A"™ to be expressed in
terms of A!,
If we consider the scattering part of the extinction,

even the Rayleiyh scattering is not exactly a power laws
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because the dispersions of the refractivity and the
anisotropy of the polarizability maxe the molecular=-
scattering extinction steeper than A'-“ (Young, 19823

Bates, 19b4; Nicolet, 1984]. Un the other nands, the aerosol
extinction is much flatter, and is ususlly near 17 .
Because the aerosol extinction dominates at long
wavelengths, and the molecular scattering at short
wavelengths, the logarithmic derivative of A( %) is closer
to =4 in the violet and closer to =1 in the red.

On top of this, there is very strong absorption by ozone
below about 350 nmy, and more than 1% absorption in the
Chappuls bands between about 500 and 680 nm (Vigroux, 19533
Inn and Tanaka, 1953; Griggs, 19681. This band absorbs more
than 0.1 percent in the zenith between about 450 and 650 nm,

Thus, A(A ) cannot be regarded as a power law function
in accurate work, despite tne pedagogical utility of this
crude approximation. However, If A( X ) is not 8 power
lawy, then not onily is (X A'/A) wavelength-dependenty but
we cannot express the second derivative in terms of the

firste In fact, the A" term

lxz 2 2
A" d (in A) d in A ,
A 2 d In

diin )

involves both the first and the second logarithmic
derivatives of A(X Yo If A(A ) wer2 a power laws Its second
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logarithmic derivative would vanishy and (16) would provide
a very simple estimate for the A" term in (11)s In reality,
Wwe must estimate the second logarithmic derivative of A(A )
in addition to the first,

In 1952, oniy one color Index {(the old International
color Index) was in common usey and the plethora of modesn
multicolor systems had not yet been invented, Even the UBV
system had not been formally introducede Thus It was quilte
natural for King to try to make a single color index do
everything: only one was available, But today, we need not
be so restricted,

If we measure only two points on a function, we can
fit a straight tine through them, This linear fit allows
us to estimate potn the function and its slope at any point.
If we have ‘three data, we can fit a parabola, and determine
the curvature (ie.es» a second derivative) as well., Even if
the data are unequally spaceds standard techniques of
numer ical analysis aliow us to find these derivatives at
any point. ¢

I propose to adopt this numerical—analysis point of view
so as to estimate the A™ terme Though this may appear novel,
it is really quite similar to what is already done for
stars in a number of multicolor systems, If the bands are

nearly equally spacea in wavelength, we can use one color
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index to estimate the slope of a star's spectrumy, and the
difference of two neighboring color indices to estimate
its curvature.s In fact, such curvature indices as nl and
cl in the uvby system are already quite familiar to
photometrists.,

If three bands are exactly equally spaced in wavelength,
or three samples of any function are equally spaced in its
argument, it is well known that the first derivative at
the central point is better estimated by the siope between
the two end points than by the siope between the central
one and eltner of its nelghoors, provided that the samples
are sufficiently close together that higher=order terms
can be negilecteds (This fact is used in the reduction of
photometry in the Geneva system; this must surely be another
reason for the excellent precision of trre published Geneva
resultss) The reason is simply that three points allow
parabolic approximationy, which is generally better than
the tinear approximation through two neighboring points.

If the tnree points are unequally spacedy, the derivative
of the function can still be expressed as a simple welghted
sum of the three ordinatesy foillowing standara Lagrangian
inter polation methods. In the general case, the welght of
the central point is not Zeros as it is for equal spacing,

The details of the derivation are given in tne Appendixe
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However, this process only makes sense if the bands
over | ap enough that a polynomial passing through their
average intensities at their effective wavelengths is a
good representation of the smoothed spectral irradiance
funct lon, as defined above. In other words, the smoothed
irradiance must be sampied at intervals (i.e.» band spacings)
close enough to satisfy the sampiing theorem [Youngs 1974].
Mo exlsting photometric system does this, though the Geneva
system comes closes

Numerical Simulations

To illustrate the improvements possible with adequate
sampl ing and accurate data reductions, 1 have done several
simple numerical simulations of wideband photometry and
reductions. For simplicity, I used symmetrical passbands,
to xeep third=-oraer effects negligibles Both inherently
smooth spectra (a set of black bodies, and a set of artificlal
continua parabolic in the logarithm of spectral irradiance)
and realistic spectra taken from the tables of Gunn and
Stryker [1983) were multiplied by standard atmospheric
transmission functions for 1.0, 1.5 2.0 and 2.5 air
masses; multipliead by cosine=squared response functions
500 angstroms wide at nalf maximum; and integrated, to give
synthetic observational data. Simiflar calculations without

the atmospneric transmission gave true extra=atmospheric
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values for each instrumental system.,

In each case, the central band of a 3-band system was
kept fixed at 45Uu Angstroms; band spacings of 100, 200,
300, and 500 Angstroms were used for the starse The columns of
Table I show the standard deviation (root-mean-square
residual per degree of freedom); the maximum residual in
the middle (4500 A) band == a rough measure of internal error;
and the maximum error in the extra—-atmospheric magni tude
in the middle oand calculated from the fitted parameters,
This last column is a8 rough estimate of external error.

The taole concentrates on the results for the middie
band, because it is the same for all cases; the outer bands
move as the band spacing changes, and so are not strictly
comparable from case to case., Nevertheless, It Is worth
remarking that the errors in the shortest-wavelength band
are about double tnose for the middie band so long as the
spectra are smoothy or the bands are closer than 300 Angstroms,
For 300 A spacinys the errors at the shortest wavelength are
about 4 times tnose for the middle band; for 500 A spacingy
they are aoout 5 times larger,

Thus, the Table suggests that sampiing for real stellar
spectra is adequate at 200 A spacing; marginal at 300 A; and
wholly inadequate at 500 A» wnicn Is the full width at half=-

maximum of the bandse The aliasing errors are thus small
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for band spacings below hatf the FwHM, and increase raplidily
at larger spacings. Furthermore, as only a dozen stars have
been used, and we may expect the worst error from a larger
set of stars to be somewshat larger, it appears that
millimagnitude accuracy can be achleved with bands as

broad as 500 A if their spacing is about 250 A.

The reader should bear in mind that these bands were
perfectly symmetrical, so that third-order terms (which
involve the third central moment of the passband) were
eliminateds Real filters always produce markedly
asymmetrical passbands, so we may well need to include the
next-ordar terms in the expansions. Unfortunately, the
resources available for this work did not allow a thorough
investigation of the spacing required to reach a gliven
tevel of precision with realizable passbands.

As the atmosphere is part of the instrumental system,
the success in transforming thnese pseudo~observations
from inside to outside the atmosphere to midlimagnitude
accur acy suggests that the transformation problem between
different instrumental systems can also be satisfied with
properly samplea datas using this same numerical=
interpolation approach.

Conclusions

gandwidtn effects do not seem to be a serious limitation



to the precision and accuracy of broadband photometry, if
they are modelled correctiy. This requires both a more
detai fed understanding of the derivatives that appear in
the classical strSmgren=King type of analysis, and the use
of well-established numerical-analysis methods to determine
all the required derivatives directly from the
observational data.

Numerical simulation experiments show that
millimagnitude accuracy can be achieved == roughily an order
of magnitude improvement over conventional methods == even
with bands as broad as 5u0C Angstroms (full width at hailf
maximum)s This is simifar to the width of the UBYV bands.
However, much closer spacing (abput 200 Angstroms) is
required tnan the roughly 1000 Angstrom spacing of the UBYV
bands. Thus, the low accuracy of UBV photometry seems
primarily to be due to Its violation of the sampling
theorem, as pointed out earlier [Young, 19741,

As the uvby 4~color system is even more undersampled,
one would expect even larger aliasing errors to occur in
it; andsy indeed, errors exceeaing a tenth of a magnltude
are reported oy Manfroid and Sterxen [19871, even in careful
worx where many stanadards are used and the extinction is

well determined.
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Appendix

The extension of the Strdmgren-King method to higher-order
terms requires derivatives of both the smoothed stellar
spectral Irradgiance ls and the atmospheric extinction A»
as functions of wavelengths, Suppose we sample these
functions at three unequally spaced wavelengths determined
by the instrumental filters. We need to know the relative
spacings of the samples (i.ees» the photometric passbands),
which are required in the Lagrangian interpolation and
dlfferentlationlformulae.

Let us suppose that the middle sample (band) Is displaced
a fraction f of the separation of the outer two from their
midpoints Thuss, f may run from =1/2 at the shortest of the
three wavelengths to +1/2 at the longest; It would oe O if
the middle band were exactly midway between the others.
(Dbvioustys we will try to choose filters that make f smail,)

For the sake of generality, let us use x for the
independent variable and y for the dependent variable,
rather than wavelength, spectral irradiance, extinction,
or any other specific quantitys Our three samples are at
X » x_» and x_» and the function values are y » y »

v 1 l Q 1

and yz. In terms of f», the middle sample is at
1
X = = (x +x) + f Ax = x ) o (Al)

Nows, If we want the tunction value somewhere in the interval
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from x0 to xz, let us similarly specify the interpotation
position by a parameter g definea like f, so that g runs
from -1/2 at x to +1/2 at xz; 9 = f at the middle

0]
sample. In terms of f and g, the interpolating polynomial Is

{g - f) (9 - 1/2) {g + 1/2) (g - 1/2)
y(g) = =mmecccr . y t+ sesmscescsecceo se——y
(f + 1/2) 0 (f «+ 1/2) (f = 1/72) "1

(f = g) (g + 1/2)

(f = 1/2) 2

and {ts derivative is

(f + 372) 1
(f + 1/72) ¢ (f + 1/2) (f - 1/72) "1
(f + 1/2)

(f = 1/72) "2

at xo;

(f - 1/2) 2 f

YUf) = ¢ mmmccmeas 4 emmeea Sl ———

(f + 1/72) "0 (f ¢+ 172) (f = 1/2) "1

(F + 1/2)
- emeemme—a (A3b)
(f - 1/2) "2

at x ; and
1

Co1s2) (F - 1/2) L
+ B = ovasesovenem oo +
y (t + 1720 Yo (f + 1/2) (f = 1720 1

(f = 3/2)

(f = 1/2) "2

at xz. At all three pointss the second derivative is
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2

- = D Y . = e y -

y" = 4
(f ¢+ 1/72) 0

2

¢ oo meemonma y )

(f = 1/¢) 2

Iindependent of g,
Is a constant.,

Now we can write Eqel(ll)

2
1 AL, 2
x = E - m" + (m?)
Ao
Miz)A(A )
al [ 2 m! = =mecccwwe= 3!
1.080
where
. d in I at
m B e as oo : =
d tn\
2
d (in 1)
mll P ; a” =
2
{d In A )

and all expressions are evaluatea

We now set a
)

{the middle band)s E£Qq.

s |n A'; for i =

gs=Tf

-1
o= D55 G

0

(f + 172)

(f = 1/72)

‘zjl
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H(z)A(A )

2
1t v 1720 1f - 1/20 1

(A®)

as the second derivative of a parabola

in the text as

-

1.0066

(A5)

2
d {Iin A)

- - D - G SR - H

(s 1n Mo°

at X o.

l» 25 and 3 + Then, for

(A3Dp) gives

. 2 f
V) (fF ¢ 1/2) (f = 1/2)

(A6)



and there will be similar expressions, based on Eqs. (A3a)

and (A3c), for the other two bands. For all three, we find

-2

[ AL, ] [ 2 2
a" = Iin {~--——--} 1 | —=———c=- a_ + === 3
>\o (f + i/¢) O (f ¢« 172) (f - 1/2) 1

2
b omeeomee Lokl - | ] . ‘A?’
(f = 1/2) 2

Because magnitudes are negative logs to the base 2¢512+04
instead of natural logarithms, the equations for m' and m"
are similar to these, but contain additional factors of
=1e085740ee The magnitudess, unlike the extinction
coefficlents (which are measured on an absolute scale),
contain additive Zero=-point terms due to the instrumental
sensitivity gifferences among bands, Thuss in terms of the
extra-atmospheric monochromatic magnitudes mo, ml, and

ma, we have
-1
[ /az ] [(f - 1/2) 2 f
m! = in §e=m=- m—meseese 0+ -—m
Ao (f + 1/72) 0 (f + 1/2) (f = 1/2) 1

(F ¢ 1/2) ] -1
- mmenilil m | f---=-- (48)
(t = 1/2) 2 1.0857

for the middle band at g = f , and corresponding equations,

mutatis mutandis, for the other two bands. Finatly,

-2
[ A, ] [ 2 2
m' = in o=} ] J ===—=ccea m_ o+ -—— - —————
)\o (f + 1/2) 0 (F + 1/72) (f = 1/2) 1
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Z 1 2

TRV "‘z] ('1'?6'5'5'?) (49)
at all three bands. Note tnat the factor of =1.0857.e0 is
squared herey and hence positive. Alsoy» the magnlitudes mo
to mz here implicitly contaln zero=point terms that must
be evaluated; a constraint such as z0 + zl + 22 = 0
must be imposed to prevent the matrix of tne normal
equatlons from peing singular.

Thuss the equation of condition for photometric
reductions is the result of combining Eqse. (A5 = A9) with
£q. (10) in the texts In this combination, note that the
terms containing a', a", m', and a" always involve elther

second derivatives aloney, or squares of products of first

derivativesy, so that the factor

/11.2 //l.QBb 2

W = - e e (A10)
)\‘ In ()\2/ }‘o)

may be removed from all termse. The quantity W in Eq. (Al1l0)
plays a role similar to that of the old parameter of the
same name in Eqse (3.1.56) and (3.1+57) of Young {1974]), but
the new equations are more exact and involve fewer
approximationse In particular, I now evaluate the second
derivatives of A and I explicitly from the data, as well as

keeping the logarithm function intact,.
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The greater complexity of these equations Is not a serious
obstacle to photometric reductions. If we are to approach
the precision that has long been the prerogative of the
astrometrists, it is only reasonable that our equations
must begin to approach theirs in complexity. 1In any case,
computers are now so large and fast that there Is no
difficulty in solving foar a slightly larger number of
parameters: here we have 3 magnitudes for each star; 3
extinction coefficients for each night; two independent
instrumental zero points (which should remain fixed If
the instrument is well designed and constructed); the three
bandwidth parameters W, one for each band; and the parameter
f that specifies the relative band spacling.

Thus, only the last 6 parameters describe the
instrumental system. As Manfroid and Heck (1983, 1984) have
shown, even more instrumental parameters can be wel |l
determined if data from several nights are combined. And,
in fact, numerical experiments show that these parameters
can be determinea adequately with a modest number of
observations. A particular advantage of this more precise
model is that the data are represented more closely than
with the older approximationss so that (if the observations
are carefully done) the residuals from the least-squares
fit are smaller., This means that fewer observations per

parameter are required to reach a given level of precision.
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However, one must bear in mind that the model is useful
only If the bands overlap enough to satisfy the sampiling
theoreme 1 have pointed out before [Young, 1974] that no
existing system does thise. Further work is needed to
deter mine the necessary spacing; but preliminary numerical
exper iments suggest that bands should be spaced about 172
of their full width at half maximume Thus, for bands as wide
as those of the UBV systems a spacing on the order of 200 A is

suggested.
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Table 1. Standard Deviationsy Maximum Residuals, and Maximum
Extrapolation Errors of Extinction Fits.

ortese | solitfon  HEML DENLIT R
Biack bodies 300 A 0?000023 0?000033 0?0002
Parabolic 300 A 0.000078 U+00011 0.0006
Gunn=Stryker 100 A 0.000071 0.00023 0,0005
Gunn=Stryker 200 A 0,000092 0.00022 0.0006
Gunn=Stryker 300 A v«00020 0.,00025 0,0008
Gunn=Stryker 500 A 0.G60067 0.,00050 0.0018
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